

How to prove liman = a tiR ? O Let EDO be given. 2 Find a useful estimate for 121-21. 3 Find K(E) EN st. the estimate in @ is less than & whenever n> K(E). (D) Complete the argument.

Exercise:
Prove
$$\lim_{n \to \infty} \left(\frac{n^2 - n}{2n^2 + 3}\right) = \frac{1}{2}$$
.
Proof:
D Let E>O be given
 $\left(\frac{n^2 - n}{2n^2 + 3} - \frac{1}{2}\right) = \left(\frac{(2n^2 - 2n) - (2n^2 + 3)}{2(2n^2 + 3)}\right)$
 $= \frac{2n + 3}{2(2n^2 + 3)} \leq \frac{2n + 3}{n^2} \leq \frac{2n + 3}{n^2} = \frac{5}{n}$.
C Let $K := \lfloor \frac{5}{2} \rfloor + 1$
C Then, for all $n > k$, we have
 $\left\lfloor \frac{n^2 - n}{2n^2 + 3} - \frac{1}{2} \right\rfloor \leq \frac{5}{n} \leq \frac{5}{k} < 2$.
Therefore, $\lim_{n \to \infty} \frac{n^2 - n}{2n^2 + 3} = \frac{1}{2}$.

Example 2: Prove
$$\lim_{h \to 0} (\int nH - Jn) = 0$$
.
Proof: O Let E>O be given.
(a) Mote that, for $n \ge 1$,
 $\int nH - Jn = (\int nH - Jn) (\int nH + Jn) = \frac{1}{\sqrt{nH} + Jn} = \frac{1}{\sqrt{nH} + Jn} \le \frac{1}{2\sqrt{n}}$.
(a) Let $K := \lfloor \frac{1}{4\xi^2} \rfloor + 1$.
(b) Then, for any $n \ge K$, we have
 $\int \int nH - Jn - 0 \rfloor \le \frac{1}{2\sqrt{n}} \le \frac{1}{2\sqrt{K}} \le 1$.
There fore, by definition.
 $\lim_{h \to \infty} (\int nH - Jn) = 0$.
 $n \to \infty$

How to prove a sequence is divergent?
Or disprove live
$$x_n = t$$
.
There exists some $z_0 > 0$ st. $\forall N$, $\exists x_n$ with $v > N$
s.t. $|x_n - x| \neq z_0$.
Equivalently, \exists subsequence x_n ; st. $|x_n - x| \geq z_0$.
Example:
 $1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$
 $\exists x_n = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1$

Example 3:
Show that the sequence
$$(1,1,1,1,...)$$
 is divergent.
 $(\lambda_n = \{-1, if n \text{ is odd.} \}$
 $(\lambda_n = \{-1, if n \text{ is odd.} \}$
 $(\lambda_n = \{-1, if n \text{ is odd.} \}$
 $(\lambda_n = \{-1, if n \text{ is oven.} \}$
Need to prove $\forall x \in \mathbb{R}. (\lambda_n) \text{ does not converge to } x$.
(hoose to = 1.
If $x \leq 0$, then we can choose $|\lambda_{2n} - \lambda_1| = 1 - x \geq 1 = \varepsilon_n$
If $x > 0$, then we can choose $|\lambda_{2n} - \lambda_1| = 1 - x \geq 1 = \varepsilon_n$
If $x > 0$, then choose $|\lambda_{2n+1} - \lambda_1| = x + 1 > 1 = \varepsilon_n$.
In any case, for any large N ,
there exists some $n > N$ st. $|\lambda_n - \lambda_1| \gg \varepsilon_n$.
Therefore, the sequence (λ_n) is divergent.
 $= -\frac{1}{2N}$